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Abstract: It is common to assume that worker productivity is normally distributed, but this assumption is rarely if 
ever tested. We estimate the distribution of worker productivity where individual productivity is measured with 
error, using the productivity of elementary school teachers as an example. Proposals to improve teacher 
productivity often focus on the extreme tails of the productivity distribution, so we pay particular attention to the 
shape of the tails of the distribution. We do this using a nonparametric density estimator that explicitly accounts 
for measurement error. We use data from the Tennessee STAR experiment, and longitudinal data from North 
Carolina and Washington. While the exact productivity distributions differ among the three, the results are 
qualitatively similar. Statistical tests show that the productivity distribution of teachers is not Gaussian, but the 
differences from the normal distribution tend to be small. Our findings confirm the existing empirical evidence 
that the differences in the effects of individual teachers on student achievement are large and the assumption 
that the differences in the upper and lower tails of the teacher performance distribution are far larger than in 
the middle of the distribution. Specifically, a 10 percentile point movement for teachers at the top (90th) or 
bottom (10th) deciles of the distribution is estimated to move student achievement by 8 to 17 student percentile 
ranks, as compared to a change of 2 to 7 student percentile ranks for a 10 percentile change in teacher 
productivity in the middle of the distribution.  
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I. Introduction 

By how much does the productivity of one worker within an occupation vary from the productivity of 

another worker? We answer this question for teachers, estimating the distribution of worker productivity in the 

form of a probability density. Teacher productivity, as measured by student outcomes, has been widely studied, 

and it is well established that the difference between high-productivity and low-productivity teachers is quite 

large, with long-term implications for student achievement and labor market outcomes. This observation has led 

to policy proposals that intervene at varying points in the probability distribution of teacher productivity. Most 

school systems invest significant resources in professional development, a strategy used to try to improve the 

productivity of all teachers, but more recently policy initiatives have focused on the tails of the distribution: 

significant raises for the best performing teachers and dismissal for the worst performing teachers. The efficacy 

of such policies depends, in part, on the shape of the distribution of teacher productivity. We estimate a 

complete productivity distribution using a nonparametric estimator that corrects for measurement error, and 

focus on the extent to which the shape of the distribution differs from the widely held assumption of normality. 

There is surprisingly little academic focus on the shape of the distribution of worker productivity. This is 

perhaps not surprising given that most jobs produce multiple outputs so a focus on only one or two would only 

capture a slice of employee production. Only a few studies outside of education estimate densities of employee 

productivity. A notable example is Mas and Moretti (2009), which offers a kernel density estimate for 

productivity of supermarket cashiers. Mas and Moretti find productivity to be very roughly bell-shaped. (See 

also, Bandiera et al., 2009 and Paarsch and Shearer, 1999). Density estimates are now quite common in the 

teacher effects literature (e.g. Boyd et al., 2008; Goldhaber and Hansen, 2013; Kane et al., 2008), but these 

studies do not carefully examined the tails of the distribution and all make the assumption that the productivity 

distribution is Gaussian. 

There are several benefits to focusing on public school teachers in examining the distribution of worker 

productivity. First, education is a major industry with K-12 education expenditures in the United States 

comprising approximately 4 percent of GDP. Teachers comprise the single largest college-educated profession 
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–  there are over three million public school teachers – and they play a vital role in the creation of future human 

capital.1 Second, while the productivity of a worker always depends on available capital and elements of team 

production, teachers are more isolated from other factors of production than are many other professionals so 

estimating an unconditional productivity distribution is meaningful.2 

The distribution of teacher productivity is also immediately relevant in today’s education policy 

environment. Traditionally, education policies have been applied broadly across the productivity spectrum; 

focusing on rewards for seniority or credentials and the provision of in-service training (professional 

development). But while it is still not the norm in public schools, a number of states and local systems have 

recently implemented policies tying teacher evaluations to consequential personnel decisions, some of these 

involve dismissing the very worst performing teachers and rewarding the most effective; policies focused on the 

tails of the productivity distribution.3 

Assuming that productivity is normally distributed, it is reasonable to infer that policies shifting the 

distribution of effectiveness in the tails of the distribution will have far larger effects on student achievement 

than would policies that shift the effectiveness of the average teacher. Traditionally, research on teacher effects 

has reported estimates of these effects based on the assumption that the distribution of productivity is normal. 

For example, most existing estimates of teacher productivity report something of the form that an ! standard 

                                                   
1 Differences between teachers account for about 7 to 10 percent in the overall variation in student test achievement (Goldhaber et al., 
1999; Nye et al., 2004; Rivkin et al., 2005). The magnitude of teacher effects are discussed more extensively below. 
2 This is likely to be particularly true at the elementary level (our focus), where team production is minimal because most teachers are 
responsible for the instruction of a classroom of students throughout the majority of the day. Jackson and Bruegmann (2009) find, at 
the elementary level, that a one standard deviation increase in a teacher’s colleagues value-added due to observable peer 
characteristics is associated with a 0.6 to 0.8 percent of a standard deviation increase in student test scores and that when including 
unobserved peer effects, a one standard deviation increase in the mean estimated peer value-added is associated with around a four 
percent of a standard deviation increase in student test scores. While important, these effects are small relative to the overall 
magnitude of teachers’ individual contributions to student learning, and evidence on the portability of the effectiveness across contexts 
(grades and schools) also suggests limited team production (Bacher-Hicks et al., 2014; Chetty et al., 2014a). 
3 High stakes uses of output-based measures of teacher productivity have been spurred by such federal initiatives as the Race to the 
Top and Teacher Incentive Fund grant competitions. For simulation evidence on how influencing the composition of the teacher 
workforce might affect its overall productivity, see Hanushek (2009), Goldhaber and Hansen (2010), Chetty et al. (2014b), and 
Rothstein (2014); see Goldhaber (2015) on why such simulations could result in misleading estimates of the effects of workforce 
composition policies. 
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deviation movement across the distribution of teacher quality corresponds to a " standard deviation movement 

across the distribution of student outcomes.4  

Not surprisingly a number of studies have explored the implications for students of increases in the 

quality of teachers by changing the mix of people in the teaching profession through firing, layoffs, or non-

tenuring teachers, or through retention bonuses.5 Chetty et al. (2014b), for instance, consider the implications of 

Hanushek’s (2009) hypothetical that teachers in the bottom 5 percent of the value added distribution be 

dismissed (with the assumption that they could be replaced by teachers of average quality). Based on their 

findings on the impacts of teacher quality on adult earnings, they present a back-of-the-envelope calculation that 

substituting an average teacher for a bottom 5 percent teacher would increase the present value of average 

lifetime earnings of a student by $14,500. (The average class size in Chetty et. al. was 28.2, so the total NPV of 

the replacement is estimated to be $407,000). This, along with the other simulations, assumes that teacher 

quality follows a Gaussian distribution.6 

The assumption of normality is convenient – most policy questions can then be settled by just knowing 

the standard deviation of teacher productivity measured in units of student outcomes. While it is fairly standard 

to assume that most social psychological variables are normally distributed in the population (often by 

construction), as Mayer (1960) notes, “…there is little reason to assume that ability is in fact normally 

distributed” (p. 189). We are only aware of one paper (Pereda-Fernández, 2016) that investigates the potential 

that the distribution of teacher effects are non-normal. This work relies on estimating higher-order moments of 

                                                   
4 In a review of the effects of teacher effectiveness, Hanushek and Rivkin (2010) suggest that the effect of a one standard deviation 
change in teacher effectiveness, based on models that include school fixed effects (so are within school estimates), are in the range of 
.11 to .15 percent of a standard deviation of student achievement. Estimates that do not include school effects and therefore assign 
differences in schools to teachers, tend to be larger, in the neighborhood of .20 to 30 percent of a standard deviation (Aaronson et al., 
2007; Goldhaber and Theobald, 2013; Kane and Staiger, 2008). The estimates we describe below are consistent with this range, with 
the exception of Tennessee where the estimated effects are somewhat larger. 
5 See, for instance: Chetty et al. (2014b), Hanushek (2009), and Rothstein (2015) on teacher dismissals; Goldhaber and Hansen (2013) 
and McCaffrey et al. (2009) on selective tenuring; Boyd et al. (2010) and Goldhaber and Theobald (2013) on layoffs; and Chetty et al. 
(2014b) and Rothstein (2015) on selective retention bonuses. 
6 See equation 14 and Online Appendix D of the Chetty et al. (2014) study for details about the simulation; and particularly page 2672 
where Chetty et al. say “Under the assumption that [value added] is normally distributed. 
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residuals to detect departures from normality and finds that the distribution of teacher effects is slightly skewed 

and platykurtic.7  

Our interest in the shape of the productivity distribution calls for use of a nonparametric density estimate 

so that the shape of the distribution is determined empirically rather than by assumption. We present a formal 

statistical test for normality. Normality is very strongly rejected, but the rejection in some ways reflects the 

large samples and the power of the test. While the distribution of teacher productivity could be heavily skewed 

or multi-modal, etc., in fact the distribution looks much like a bell curve—just not a bell curve that is Gaussian 

(nor t-); the difference is in the tails rather than in the overall shape.  

We find that the difference in terms of student achievement between effective and ineffective teachers is 

large, as does the broader literature. When we focus on what happens at different points in the productivity 

distribution, asking the question “what happens when you replace a teacher with a given productivity with a 

teacher who performs at a level 10 percentile points higher in the teacher productivity distribution”, our 

estimates illustrate the differential impact that teachers at the extremes have on student achievement from those 

in the middle of the distribution. Figure 1 offers a visual summary of our key findings illustrated with math 

scores from North Carolina. The plot links teacher percentiles on the horizontal axis to student percentiles on 

the vertical axis. The lines show the effect of movement across the tails versus movement in the center of the 

distribution—the former lines being much steeper. An improvement of teacher effectiveness at the bottom 

(moving from the 2nd to the 12th percentile) or top (moving from the 88th to the 98th percentile) tends to be 

associated with a change in student achievement of about 13 student percentiles, versus a comparably sized 

change in teacher productivity near the median of the distribution (moving from the 45th to 55th decile), which is 

generally associated with a change in student achievement of about 4 student percentiles. 

[Figure 1 About Here] 
 

                                                   
7 Pereda-Fernández, (2016) differs substantively from our approach in that the author uses test score levels rather than the value-added 
approach that we follow and limits the sample to kindergarten. The paper also offers a novel approach to measuring spillover effects, 
an issue that we do not address. 
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A second methodological issue that arises in estimating teacher productivity is that the estimates of 

individual productivity include measurement error, which is ignored by standard nonparametric techniques. To 

oversimplify slightly, point estimates of value-added for an individual teacher are least squares regression 

coefficients on teacher indicator variables in what can be thought of as an educational production function. The 

point estimate for the #$% teacher, &', consists of the true level of productivity, &', plus an approximately 

normally distributed sampling error, (', with standard deviation )*+. The observed dispersion of estimated 

productivity, ),, overstates the true dispersion, ),, precisely because the observed dispersion includes the 

sampling error (Rockoff, 2004). When parametric estimates are made, it is therefore commonplace in the 

teacher effectiveness literature to use empirical Bayes shrinkage (Aaronson et al., 2007) methods to account for 

sampling error. This shrinkage process, however, assumes normality and generally shrinks all estimates by an 

equal proportion without distinction between the length of the tails versus the center of the distribution (Guarino 

et al., 2015; Mehta, 2015). Since we care about getting the shape right, we employ a recent method from the 

statistics literature, Delaigle and Meister (2008a,b) that is intended precisely to give a nonparametric density 

estimate when the observed data points are subject to heteroskedastic error. 

We conduct our empirical analysis on three separate data sets: the widely-used data from the Tennessee 

STAR experiment, and longitudinal data from North Carolina and Washington State. We carry out the analysis 

across multiple sites in order to assess the extent to which our findings generalize across experimental and non-

experimental settings, different educational contexts and grades. While there are some differences in the 

estimates, e.g. larger estimated teacher effects in earlier grades, the findings are remarkably robust across 

datasets in showing differential marginal productivity in the tails of the distribution. 

II. Methodological Approach to Density Estimation 

Density estimation is a two-step process in which we first estimate individual teacher effects and then 

generate a nonparametric density estimate from the individual teacher estimates.8 We observe - = 1,… , 2 

                                                   
8 Teacher effects can be estimated on a yearly basis, but then cannot be distinguished from classroom effects. As we discuss below, we 
estimate both teacher effects using multiple years of teacher (as many as are available for each teacher) data and yearly teacher-
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students assigned to # = 1,… , 3 teachers in subject s, and we let 4(6,$)∈' be an indicator variable for whether 

student - is assigned to teacher # at time t. If 96,:,$ is an outcome measure of interest, for example a test score, 

then we can write 

96,:,$ = ;<
=

<>?
96,:,$@?
< + &?4(6,$)∈? + ⋯+ &C4 6,$ ∈C + D6,$E + F6,$ (1) 

 

where D is a set of student covariates, 96,:,@?
<  is a cubic polynomial of lagged test scores in one or more subjects, 

and F is a random error. 

Some researchers also add a school fixed effect to equation 1, hence measuring the impact of teacher 

effectiveness within school. But this attributes any mean differences in the quality of teachers who are 

employed in different schools to the school effect as opposed to teachers, which is potentially problematic if 

schools are able to hire teachers of differing average abilities.9 This may be particularly important when 

investigating the tails of the distribution given that schools have quite different applicant pools (e.g. Gross et al., 

2010). For this reason, and because recent research suggests that teacher productivity is transferable across 

schools (Chetty et al., 2014b; Glazerman et al., 2013; Xu et al., 2012), our preferred specification omits school 

fixed effects. However, our findings are quite similar if we instead include school effects.10 

The estimates &' can be regarded as the true &' plus sampling error. The central goal in the paper is to 

determine the underlying random density of the &'′H, which we do with a nonparametric estimator. Since &' is 

simply a regression coefficient, under reasonable assumptions, the sampling error is approximately normal. The 

methodological problem is that the dispersion of the observed &', which includes sampling error I', exaggerates 

                                                                                                                                                                                             
classroom effects. Given the increase in the precision of the estimates, our preferred specification is one that includes multiple years of 
teacher data, but our findings are qualitatively similar if instead we use teacher-classroom-year effects. 
9 It is also possible, with panel data, to identify school level effects based on teachers who move from one school to another, but this 
form of identification also relies on strong assumptions, such as teachers being equally effective in different school contexts. 
10 The Tennessee STAR data only includes 1 year of data so the only way to estimate specifications that include a school effect for this 
dataset is to exclude a hold out teacher for each school. Another alternative is to estimate teacher effects in two stages, first regressing 
student achievement on student covariates and class size and then using the residuals to estimate teacher effects. The correlation in the 
Tennessee data between the one-stage and two-stage teacher effects is very high, over .97. 
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the dispersion of &', ),
J ≈ ),J +

?
C

)*+
JC

'>? .11 Since ),
J and )*+

J  are estimable, it is possible to back out an 

estimate of ),J. This “backing out” is essentially what empirical Bayes estimators do.12 

If the errors in equation (1) are homoskedastic, then the error variance estimated from the standard 

errors on the regression coefficients on the teacher dummy variables will be—roughly—inversely proportional 

to the square root of the number of students of teacher #, 2', and therefore heteroskedastic. Novice teachers 

are generally lower performers than are more experienced teachers (Kane and Staiger, 2002; Rockoff, 2004), 

and 2' is typically smaller for novice teachers in the North Carolina and Washington data sets. Thus & and )*+
J  

may not be independent. In particular, failing to account for measurement error may cause a particular problem 

in estimating the shape of the lower tail of the distribution. 

The second reason that sampling error can vary is that some classes are more heterogeneous than others. 

Suppose that the error variance, )LM
J , varies across students. The variance of &' will be roughly proportional to 

)LM
J

6∈' /2'. We use White robust standard errors to accommodate possible heteroskedasticity, despite the fact 

that 2' is sometimes smaller than is desirable from the point of view of consistency arguments. 

Given a point estimate and standard error for each teacher, we take advantage of recent advances in the 

statistics literature and use the algorithm for nonparametric density estimation in the presence of measurement 

error described in Delaigle and Meister (2008a,b).13 This method is designed precisely to compute a 

nonparametric density estimate from data that include heteroskedastic errors. Standard nonparametric kernel 

density estimates calculate empirical densities by counting up the fraction of data points near a given x-ordinate 

while down-weighting the points further from the ordinate. The D-M algorithm increases the down-weighting 

for observations with larger measurement error. As with standard kernel density estimates, the D-M algorithm 

                                                   
11 This requires &' and (' to be uncorrelated, which should be the case from a regression. However, the two need not be independent. 
In fact, higher moments are likely correlated for reasons offered below. 
12 Empirical Bayes (EB) methods (e.g. Aaronson et al., 2007) impose parametric assumptions—in practice they impose normal 
distributions, which is precisely what we wish to avoid. Note too that shrinking estimates and then using a nonparametric density 
estimate is not appropriate because shrinkage reduces mean square error but does not eliminate measurement error. In addition, there 
is some evidence that this practice leads to biased estimates of teacher effectiveness (Demming, 2014; Guarino et al., 2015).  
13 We use the plug-in bandwidth estimator suggested by Delaigle and Gijbels (2002) and Delaigle and Gijbels (2004). The code 
implementation, due to Aurore Delaigle, is available at http://www.ms.unimelb.edu.au/~aurored/links.html#Code. For further 
exposition, see also Meister (2009), p. 92ff. See also Delaigle, Hall, and Meister (2008) for related work. 
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computes a discrete approximation, O !P , to the density at a specified set of grid points. We use Q = 200 grid 

points !P uniformly distributed on min &' ,max &' , where O ∙  is rescaled so that O !P ×Δ!\
P>? = 1, and 

where Δ! is the distance between grid points. 

Smoothed densities are themselves statistical estimates. There may be concern about the accuracy of the 

location of percentiles in the tails of the distribution precisely because relatively few observations fall in the tail. 

We adopt the following bootstrap strategy to compute confidence intervals. We resample the data with 

replacement 1,000 times to produce 1,000 estimates of &', ),+ , holding the bandwidth constant at the 

bandwidth used for the original sample.14 We apply the Delaigle and Meister deconvolution estimator to each 

resample. For each bootstrap sample we compute the impact of a one standard deviation improvement in 

teacher quality and report the 5th and 95th percentiles of the bootstrap sample as confidence intervals. 

In order to test the distributions for normality we use a modified Kolmogorov-Smirnov (KS) statistic. 

For each D-M smoothed density we compute sample mean and variance ] = !PO !P Δ!\
P>? , I =

!P − ] JO !P Δ!\
P>?

_
6>? . We then compute the KS statistic as D = max

P
a !P −� !P;], I , where 

a !P = O !P Δ!P
c>?  and � ∙  is the normal cdf with mean ] and variance I. To obtain critical values under 

the null of normality, we generate 2,000 Monte Carlo draws of artificial data drawn from d ], I  of length 

equal to the number of teachers in the real sample and apply the D-M smoother to each artificial sample. We 

then tabulate the Monte Carlo values of e to find critical values for the real sample. As reported below, 

normality is statistically rejected. 

We associate each teacher percentile with adjusted student gains. To calculate the adjusted student gains 

we subtract the products of the test score variables (lagged math and reading scores, with squared and cubed 

terms) and their associated coefficients from the value-added model defined in equation (1) from the current-

year test score: 

                                                   
14 Hall and Kang (2001) examine a closely related smoother bootstrap and suggest that holding the bandwidth constant is appropriate. 
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9f#gHhifjkl-26,: = 96,:,$ − ;<
=

<>?
96,:,$@?
<  (2) 

 

III. Data 

Each of the three data sets we employ has advantages and disadvantages. The advantage of the STAR 

data is that there is random assignment of students to classrooms and teachers within schools, eliminating a 

potential source of bias in the estimation of teacher effectiveness (Rothstein, 2010). STAR, however, includes a 

relatively small sample of teachers and students in early grades only, each teacher is observed only once, and 

the findings may not be generalizable (Hanushek, 1999). 

The advantage of using data from North Carolina and Washington is that each state database includes a 

large, longitudinal sample of teachers and students, a rich set of covariates on students, multiple classroom 

observations on individual teachers, and the data are more current than STAR. The disadvantage of the 

observational data from these states is that, unlike the STAR experiment, students in North Carolina and 

Washington are not randomly assigned to teachers. Given this, it is necessary to estimate value added models to 

obtain teacher effect estimates, and there is the usual risk that covariate adjustments fail to account for aspects 

of the process that leads to student-teacher matches that may be correlated with student achievement.15  

The value added models that we estimate include prior-year math and reading standardized test scores, 

free/reduced price lunch status, special education/learning disability status, gender, race/ethnicity, and grade 

indicators as predictors for all sites; however, specific variable definitions are not completely consistent across 

sites. For North Carolina and Washington we also include limited English proficiency and for North Carolina 

we also include parental education. 

 

                                                   
15 There is some disagreement in the field about the extent to which this adjustment approach results in unbiased teacher effect 
estimates. See, for instance, Amrein-Beardsley (2014), Chetty et al. (2014a), Goldhaber and Chaplin (2015) Kane and Staiger (2008), 
Kane et al. (2013), Rothstein (2009, 2010, 2014). 
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Tennessee STAR Data 

The Tennessee STAR experiment was primarily designed to answer questions about the efficacy of 

reduction in class size.16,17 The experiment followed a single cohort from kindergarten through third grade. 

Students were randomly assigned within schools to “regular” classes of approximately 24 students, “small” 

classes of approximately 16 students, or “regular-with-aide” classes of approximately 24 students. For a variety 

of reasons, the randomization was imperfect (Hanushek, 1999), but has still been judged to be useful for 

studying teacher and class effects.18 Teachers in STAR are only observed once so class and teacher effects are 

not separately identified. Test scores in STAR are designed to be vertically aligned. We take original test scores 

and standardize by subtracting the mean and dividing by the standard deviation for each grade-year. 

 
North Carolina and Washington Data 

Both the North Carolina and Washington datasets have been used widely for investigating teacher policy 

issues.19 The administrative data in North Carolina are from the North Carolina Department of Public 

Instruction, and are compiled and managed by Duke University’s North Carolina Education Research Data 

Center. The data from Washington are from the Office of the Superintendent of Public Instruction. In each state 

the data include information on student achievement on standardized tests in math and reading that are 

administered as part of each state’s accountability system, and, importantly for our purposes, in each state 

teachers and students can be linked together, enabling the estimation of teachers’ value added.20 We normalize 

student achievement growth within grade and year, as with the STAR data. The data also include information 

                                                   
16 For examples of studies using the STAR data, see, for instance: Chetty et al. (2011); Finn et al. (2007); Folger (1989); Krueger 
(1999); Word et al. (1990).  
17 Krueger (1999) gives some indirect estimates connecting improvements in the Stanford Achievement Tests to later earnings. Chetty 
et. al. (2011) link kindergarten test scores to young adult earnings. 
18 Krueger (1999), for instance, writes, “The implementation of the STAR experiment was not flawless, but my reanalysis suggests 
that the flaws in the experiment did not jeopardize its main results.” 
19 For instance, see, in the case of North Carolina, Clotfelter et al. (2009, 2010), Goldhaber and Hansen (2013), Rothstein (2010). And, 
in the case of Washington, Goldhaber and Theobald (2013), Goldhaber et al. (2013a,c), and Krieg (2006). 
20 The North Carolina data does not explicitly match students to their classroom teachers, it identifies the person administering the 
class’s end-of-grade tests. At the elementary level, the majority of those administering the test are likely the classroom teacher; 
however, as we describe below, we also take several precautionary measures to reduce the possibility of inaccurately matching non-
teacher proctors to students. In Washington, the proctor of the state assessment was used as the teacher-student link for 2006-07 
through 2008-09. The 'proctor’ variable was not intended to be a link between students and their classroom teachers so this link may 
not accurately identify those classroom teachers. However, the state’s new Comprehensive Education Data and Research System 
(CEDARS) contains a unique course ID that allows direct matching of students and teachers since 2009-10. 
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about student demographics (e.g. free/reduced price lunch status, race/ethnicity, etc.) that are used in the 

estimation of the value-added models described above. 

We utilize data for teachers and students from school years 1995-96 through 2004-05 in North Carolina 

and 2006-07 through 2012-13 in Washington. In each state we only include students who have valid math or 

reading pre- and post-test scores. We also restrict our analytic samples to elementary schools (grades 3-5 in 

North Carolina and 4-6 in Washington), and in ways designed to ensure that the person identified as the proctor 

of an exam is in fact a student’s classroom teacher. Specifically, we restrict the data to self-contained, non-

specialty classes, and only include teachers who are assigned to reasonable class sizes, and we only include 

those student-teacher matches in which the person identified as the proctor has credentials and school and 

classroom assignments that are consistent with their teaching the specified grade and class for which they 

proctored the exam.21 

Sample Statistics 

The above restrictions result in samples of 13,586 student-year observations (6,591 unique students) and 

793 teacher observations in STAR (teachers in STAR are only observed once); 1,791,228 student-year 

observations and 87,604 teacher-year observations (24,707 unique teachers) in North Carolina; and 771,190 

student-year observations and 35,518 teacher-year (11,826 unique teachers) observations in Washington. 

Table 1 reports sample statistics for select variables by site at the student-year level, with and without 

the sample restrictions described above. Across all three sites the restricted sample of students is somewhat 

more advantaged as measured by free/reduced price lunch status and student achievement. This is not surprising 

given that low income and low achieving students are more likely to be mobile and therefore less likely to have 

both a base year and follow-up test score, a requirement to be in the sample. 

[Table 1 about here] 
 
                                                   
21 In keeping with common practice in the literature, we require at least ten students to be in the teacher’s class each year. We set a 
maximum class size of 29 students in North Carolina because that is the maximum allowed by state law, but allow a more lenient 
maximum class size of 33 in Washington State because maximum class sizes are negotiated at the district level in Washington. The 
maximum observed class size under STAR is 24 students. These restrictions make little difference in our samples, only 8 percent of 
classrooms are dropped due to this restriction in the STAR dataset and1 percent in North Carolina and Washington. 
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IV. Results 

While we are primarily interested in the shape of the productivity distribution, a few intermediate results 

warrant mention. Appendix Table A-2 shows selected coefficient estimates from the models used to derive 

teacher value added. The estimated coefficients across the different sites are quite consistent. The coefficient 

estimates on prior test scores in the same subject are typically in the range of .50 to .70, but, consistent with 

prior literature (e.g. Goldhaber et al., 2013a,b; Johnson et al., 2015), cross-subject tests also predict gains in 

both math and reading. And, again consistent with prior literature (e.g. Boyd et al., 2006; Clotfelter et al., 2008, 

2010; Goldhaber, 2006, 2007; Rivkin et al., 2005), students eligible for free or reduced price lunch have test 

scores that are lower by 7 to 12 percent of a standard deviation, special education students and those who are 

identified as having specific learning disabilities also perform more poorly as do African American students. 

As signaled above, we find that the distribution of teacher productivity is non-Gaussian. In this vein, 

Table 2 reports both estimates of kurtosis and the results of a formal test for normality. D-M estimates of 

kurtosis are around four for math and four-and-a-half to five for reading. (The D-M correction for measurement 

error leads to slightly higher kurtosis estimates). In order to help think about the level of leptokurtosis reported 

in Table 2, kurtosis equal to 4 corresponds to a t- distribution with 10 degrees of freedom and kurtosis equal to 

5 corresponds to 7 degrees of freedom 

Normality would permit a simple description of the productivity distribution, but the Kolmogorov-

Smirnov test, reported in Table 2, strongly rejects a normal distribution for each site in our study. Contingent 

on the degree to which the productivity distribution diverges from normality, this could have important policy 

implications. There is, for instance, work suggesting that policy interventions that focus on the tails of the 

teacher productivity distribution could have dramatic impacts on student test achievement and later life 

outcomes (e.g. Chetty et al., 2014b; Hanushek, 2009), but the assumption of normality actually understates the 

importance of very effective or ineffective teachers. 

It is traditional to use a one standard deviation change in teacher effectiveness as the definition of an 

“effect size.” Even though we find that the standard deviation is not a sufficient statistic to describe the teacher 

effectiveness distribution, we show standard deviations in Table 2. For each site we report both unadjusted 
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estimates of a one standard deviation change in teacher quality, as well as estimates of the effect sizes that are 

adjusted for estimation error using the Delaigle and Meister approach and empirical Bayes shrunken 

estimates.22 The estimated impacts on student achievement are comparable to those previously estimated in 

these sites (Goldhaber et al., 2013a; Nye et al., 2004; Rothstein, 2010). And, also consistent with prior research 

(e.g. Kane & Staiger, 2012; Goldhaber et al., 2013b; Lefgren and Sims, 2012), there is a higher variance in the 

distribution of teacher quality in math relative to reading. 

As is apparent from the table, the approach taken to adjust for measurement error—Delaigle and Meister 

(DM) or empirical Bayes (EB) – makes only a small difference in the estimated impact of a one standard 

deviation change in teacher quality. The estimated effects in North Carolina and Washington shrink more 

noticeably under each adjustment type when they are based on only a year’s worth of matched teacher student 

data (reported in Table A-1 in the appendix), as would be expected given that the signal to noise ratio is lower 

with only a year’s worth of data (Goldhaber and Hansen, 2013; McCaffrey et al., 2009).23 

 
[Table 2 about here] 

 

One striking finding is that the estimated teacher effects are far larger in the STAR data than in either of 

the other states.24,25 One possible explanation is that this reflects the fact that the STAR teacher effects are 1-

year teacher-classroom effects (teachers are observed for a single year and class only), and these will be subject 

to greater measurement error. This, however, does not appear to be the explanation: the 1-year estimates from 

North Carolina and Washington (see Table A-1 in the appendix) are slightly larger but not anywhere near the 

magnitude of the STAR findings. Another possibility is that STAR, by design, creates heterogeneously sized 

                                                   
22 Following Aaronson et al. (2007), we estimate the variance of (' with the mean of the standard errors across all fixed effects. We 
use heteroskedasticity-robust standard errors of the fixed effects. 
23 Note that the STAR teacher effects are based on a single year so there is no analog to the single versus multi-year effect estimates 
that can be derived from the North Carolina and Washington datasets. 
24 This is consistent with other research estimating the variance of teacher effects using the STAR data (Hanushek and Rivken, 2010; 
Nye et al., 2004). 
25 It is interesting to compare STAR effect sizes here to those in Pereda-Fernández (2016), despite the differences in the sample and 
the use of value-added. We estimated a math effect size of 0.46. As an example (Table 3 column (4)), Pereda-Fernández estimates a 
direct effect of 0.156 and a social multiplier of 2.2 (both with large standard errors) which would give a point estimate of 0.34—fairly 
close to what we find. 
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classrooms by design, and this will suggest greater classroom-teacher effects as a consequence of the purposeful 

assignment of teachers to different sized classes (Pereda-Fernández, 2016).26 As a check we estimate teacher 

effects using a two-stage process in which we control for class size—first regressing student achievement on 

student covariates and class size and then using the residuals to estimate teacher effects. The estimated impacts 

are essentially unchanged.  

It is also possible that there is differential selection of students into classrooms in STAR than in the state 

samples. If there are compensating matches between teacher effectiveness and unobserved student academic 

ability in the sense that the more effective teachers tend to be matched with students who are likely to struggle 

and vice versa, then the teacher effect estimates in the state samples (but not STAR where students are 

randomly assigned to classes) would understate the true impact of teachers. Unfortunately we cannot directly 

test for this possibility, but it seems quite unlikely as most academic evidence suggests that more advantaged 

students tend to be assigned to more effective and qualified teachers (e.g. Goldhaber et al., 2015; Kalogrides 

and Loeb, 2013). 

Another plausible explanation is that the larger STAR effects are a due to the fact that they are based on 

achievement in earlier grades. Teachers may appear to have larger estimated effects on students in early grades 

due to growth in the accumulation of knowledge over time and what is tested as students progress through 

school (Cascio and Staiger, 2012). Lipsey et al. (2012), for instance, report that the mean achievement gains for 

students, across seven nationally-normed, longitudinally scaled achievement tests, shrinks substantially as 

students advance from one grade to the next.27 For instance, the mean growth in math and reading test 

achievement between first and second grade is approximately a full standard deviation, whereas the mean 

growth between 5th and 6th grade is about a third of a standard deviation in reading and forty percent of a 

standard deviation in math. Consequently, the effects of changes in teacher quality in Table 2, translated into 

                                                   
 26 About 28 percent of class sizes in the analytic sample are less than 18 students in STAR as compared to 20 percent in North 
Carolina and 10 percent in Washington. 
27 Whereas the within grade variance in test performance tends to rise as students advance from one grade to the next. 



 15 

months of student learning, do not appear very different in STAR from the two other sites once teacher effects 

are translated into typical months of student learning.28  

We turn now to our primary results on productivity. Table 3 provides point estimates of the distribution 

of productivity accounting for heteroskedastic error in Panel A (comparable results for the single year estimates 

are available upon request). Each row identifies the percentiles of adjusted student achievement gains for a 

teacher at a given point in the distribution of teacher productivity, where the teacher percentile gives represents 

a position in the DM-based estimated distribution and the student percentiles are from the distribution of student 

value-added. The teacher and student distributions are commensurable in the sense that both are mappings from 

test score measures to percentiles. We match teacher and student percentiles by reverse mapping the teacher 

percentile to a test score measure and then mapping that test score measure to the corresponding student 

percentile. Our findings are generally not all that different from what would be expected from a normal 

distribution (the corresponding percentiles for a normal distribution are reported in the angle brackets in the 

table). 

As is common in estimates of teacher effects, the distribution shows considerable dispersion. As 

examples, if a school district were able to hire a 98th percentile teacher to replace a median teacher, this would 

move student achievement from a low estimate of 18 percentile points according to the North Carolina reading 

results (48th to 66th student percentiles) to a high of 42 percentile points according to the STAR math results 

(51st to 93rd percentiles). These are all large substantive effects. 

[Table 3 about here] 
 

Figure 1 provided visual evidence that differences in marginal effectiveness in the lower and upper tails 

are far larger than in the middle of the distribution, using North Carolina math scores. Table 4 restates the 

evidence numerically, showing the difference in the point estimates given in Table 2 and adding confidence 

                                                   
28 We convert to months of schooling by dividing the effect sizes by the average grade and subject gains for the grades in each site 
(from Table 5 of Lipsey et al., 2012) to obtain an equivalent proportion of a school year, and then multiply this number by 9, assuming 
that most school years are 9 months. The effect sizes in STAR translate into a difference of about 5.5 months, whereas they translate 
into 3.9 months in North Carolina and 5.1 months in Washington. 
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intervals for the differences. A 10 percentile movement across the teacher productivity distribution has two-and-

a-half to three-and-a-half times the effect on output, as measured by student test percentiles, in the tails of the 

distribution as does the same movement in the middle of the distribution. We give 95 percent confidence 

intervals from the bootstrap described above (in Section II) in parentheses. The confidence intervals suggest that 

the estimated effects of movements in different parts of the distribution are estimated with reasonable precision. 

The numbers given in angle brackets show what the estimated effects would be if the productivity distributions 

were normal with means and standard deviations shown in Table 4. Importantly, while we reject normality, the 

nonparametric distributions we estimate do not depart appreciably from normality across all sites and both 

subjects.  

 

[Table 4 about here] 

 
V. Policy Implications and Conclusions 

The standard assumption of policy analysts is that the distribution of employee productivity is normal. 

Prior to our study, this assumption has not been empirically verified. As we show, the distribution of teacher 

effectiveness departs from the Gaussian, but not significantly, suggesting that the assumption of normality in 

estimating the implications of productivity initiatives that target different points in the distribution is reasonably 

well evaluated by assuming the distribution to be Gaussian. And, consistent with existing literature, we find that 

teachers have a very large effect on student outcomes. 

The fact that the estimated effects of teacher quality are not uniform across the productivity distribution 

has important implications for teacher policy. For instance, some new teacher policy initiatives focus on 

selective recruitment and retention (e.g. Dee and Wyckoff, 2013). But this type of targeted intervention 

targeting the tails of the productivity distribution is far rarer than the productivity initiative – professional 

development – training that targets teachers regardless of estimates of their performance. Moreover, 

professional development is a ubiquitous and costly strategy. A recent report (TNTP, 2015) estimates that 

professional development activities cost an average of $18,000 per teacher, but do not lead to systemic 
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improvement in teacher effectiveness, a finding that reflects the broader literature.29 Our findings reinforce the 

notion that experimentation in influencing the tails of the distribution might be a fruitful approach to upgrade 

the overall quality of the teacher workforce. 

Chetty et al. (2014b), for instance, consider the implications of Hanushek’s (2009) hypothetical that 

teachers in the bottom 5 percent of the value added distribution be dismissed (with the assumption that they 

could be replaced by teachers of average quality). Based on their findings on the impacts of teacher quality on 

adult earnings, they present a back-of-the-envelope calculation that substituting an average teacher for a bottom 

5 percent teacher would increase the present value of average lifetime earnings of a student by $14,500. (The 

average class size in Chetty et. al. was 28.2, so the total net present value of the replacement is estimated to be 

$407,000). Yet this, along with the other simulations, assumes that teacher quality follows a Gaussian 

distribution.30 As we report above, the distribution of teacher effectiveness we estimate is roughly bell-shaped, 

but departs notably from the Gaussian in the tails. Consistent with this picture we find that policies that change 

the placement of teachers across a wide swatch of the distribution are reasonably well evaluated by assuming 

the distribution to be Gaussian, but that movements within the tails are in some cases quite different.  

Chetty et al. reach their conclusion about the value of replacing a bottom 5 percent teacher based on the 

following calculation. A one standard deviation change in teacher effectiveness is associated with a 1.34 percent 

change in the net present value (NPV) of lifetime earnings, where NPV is estimated to be 522,000 2010 dollars. 

The authors then ask what would happen if the bottom five percent of teachers were replaced with the median 

teacher. Since the average person in the bottom five percent of a Gaussian is 2.06 standard deviations below the 

mean, Chetty et. al. calculate the gain to be 2.06×0.0134×$522,000 = $14,500. We present the analogous 

calculation for each of our six data sets in the bottom of Table 5, empirically determining the average number of 

standard deviations from the mean for an average bottom five percent teacher. Not surprisingly given our 

                                                   
29 Both experimental (e.g. Garet, 2008: Glazerman et al., 2010) and non-experimental estimates (e.g. Yoon, 2008) suggest that efforts 
focused on improving the performance of in-service teachers yield little or mixed impacts on student achievement. 
 
30 See equation 14 and Online Appendix D of the Chetty et al. (2014) study for details about the simulation; and particularly page 
2672 where Chetty et al. say “Under the assumption that [value added] is normally distributed. 



 18 

findings that the assumption of a Gaussian distribution is a close approximation to the distribution we calculate, 

the Chetty et al.-type simulation is also pretty consistent. With three of the distributions, the values of 

replacement are larger than the values calculated from the Gaussian, but smaller for the other three, but the 

differences are all within 10 percent of what would have been found with the assumption of a normal 

distribution. 

[Table 5 about here] 

While replacing teachers under the fifth percentile with average teachers has been proposed it has rarely 

been implemented.31 To see the difference in a policy focused in the tails, we do the same calculation simulating 

the effect of replacing a teacher at the 2nd percentile of the distribution with a teacher at the 12th percentile. The 

results are reported in the upper part of Table 5 The importance of looking carefully at the tails shows in two 

ways. First, the gain from this 10 percentile move is roughly half of the entire gain from swapping the bottom 

five percent for median teachers. Thus, improving the effectiveness of the very worst teachers might be a 

valuable strategy—if there is a cost effective way to do so. Second, the differences between the nonparametric 

and Gaussian estimates are much larger here—so using an appropriate nonparametric estimator really matters. 

Depending on the data set, we find the differences to range from 57 percent for STAR reading to 3 percent for 

WA reading. 

The above simulation shows that the effectiveness of investments in changing teacher quality at the tails 

of the distribution is likely to be far larger than in the middle. Yet while there are policy initiatives focused on 

the tails, the great majority of investment in teachers is focused on improving the average quality of the teacher 

workforce through professional development; this despite the fact that both experimental (Garet, 2008: 

Glazerman et al., 2010) and non-experimental (TNTP, 2015; Yoon) estimates suggest that efforts focused on 

improving the performance of in-service teachers yield little or mixed impacts on student achievement. 

It is important to recognize that while the productivity of the teacher workforce is itself a critically 

important societal issue, the findings we report on the productivity of teachers may not generalize to other 

                                                   
31 Washington DC’s recent teacher accountability policies under IMPACT may come closest to mimicking the Chetty et al. thought 
experiment (see Dee and Wyckoff, 2013).  
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sectors of the economy. In particular, there are at least two reasons to be cautious. The first is that teaching is a 

multifaceted and relatively complex job (Lanier, 1997). The second is that while there is growing interest in the 

use of teacher evaluations for personnel policies and incentives in education, most teachers have very high job 

security, especially after being tenured (McGuinn, 2010), and are compensated based on a salary schedule, not 

based on performance measures. It is unclear how these differences between the public school teacher labor 

market and the broader labor market might affect the distribution of marginal productivity for different types of 

workers. Nevertheless, our findings are important as they suggest we need more research on marginal 

productivity as the efficacy of different types of investments in developing and maintaining a high quality 

workforce depend on the returns to their focus on different points in the quality distribution. 
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Table 1. Descriptive Statistics of Student Characteristics, by Site        

 
STAR NC WA 

 
Unrestricted Restricted Unrestricted Restricted Unrestricted Restricted 

Standardized Math Score 0.000 0.091 0.000 0.057 0.000 0.004 

 
(1.00) (1.004) (1.00) (0.978) (1.00) (0.999) 

Standardized Reading Score 0.000 0.105 0.000 0.045 0.000 0.005 

 
(1.00) (1.002) (1.00) (0.978) (1.00) (0.997) 

Lagged Math Score 0.000 0.160 0.000 0.045 0.000 0.004 

 
(1.00) (0.952) (1.00) (0.978) (1.00) (0.997) 

Lagged Reading Score 0.000 0.151 0.000 0.040 0.000 0.001 

 
(1.00) (0.963) (1.00) (0.983) (1.00) (1.00) 

Free/Reduced Price Lunch 0.511 0.450 0.469 0.443 0.446 0.449 

 
(0.500) (0.498) (0.499) (0.497) (0.497) (0.497) 

Special Ed/Learning Disability 0.124 0.159 0.075 0.067 0.137 0.126 

 
(0.33) (0.366) (0.264) (0.249) (0.344) (0.332) 

White 0.621 0.701 0.600 0.625 0.631 0.628 

 
(0.485) (0.458) (0.49) (0.484) (0.483) (0.483) 

Minority 0.368 0.299 0.400 0.375 0.328 0.326 

 
(0.482) (0.458) (0.49) (0.484) (0.470) (0.469) 

Female 0.470 0.491 0.488 0.497 0.488 0.492 

 
(0.499) (0.500) (0.500) (0.500) (0.500) (0.500) 

N (teachers) 1,016 857 48,914 24,747 16,886 11,826 
N (teacher-years) 1,016 857 145,935 87,604 77,261 35,544 
N (students) 11,601 6288 1,262,070 906,667 800,319 503,490 
N (student-years) 34,803 12265 3,019,821 1,791,228 1,598,657 771,406 

Note: Standard deviations in parentheses. Students are only included in restricted sample if they have a current and prior-year 
test score. Teachers are only included in the restricted sample if they are coded as a regular classroom elementary teacher and 
have at least 10 valid students. 

 

  



 

 

 
Table 2. Characteristics of Teacher Effectiveness Distribution 
Panel A. Math STAR NC WA 
Effect sizes 

   
 

Unadjusted 0.47 0.22 0.23 

 
EB Adjusted 0.44 0.21 0.22 

 
D-M Adjusted 0.46 0.21 0.22 

Skewness (unadjusted) 0.07 0.03 0.27 
Skewness (D-M adjusted) 0.10 -0.04 0.34 
Kurtosis (unadjusted) 4.30 3.71 4.04 
Kurtosis (D-M adjusted) 4.46 3.98 4.41 
Modified KS p-value 0.001 0.000 0.000 
N 

 
857 24747 11826 

     Panel B. Reading 
   Effect sizes 
   

 
Unadjusted 0.41 0.16 0.20 

 
EB Adjusted 0.38 0.14 0.18 

 
D-M Adjusted 0.40 0.14 0.18 

Skewness (unadjusted) -0.28 -0.15 0.07 
Skewness (D-M adjusted) -0.31 -0.54 0.11 
Kurtosis (unadjusted) 5.05 4.35 3.96 
Kurtosis (D-M adjusted) 5.56 5.66 4.57 
Modified KS p-value 0.000 0.000 0.000 
N 

 
844 24747 11826 

Note: effect sizes represent the effect of a one standard 
deviation change in teacher effectiveness on student 
achievement. 

  



 

Table 3. Teacher Productivity Percentiles versus Student Achievement Gains Percentiles, with 
95% Confidence Intervals 

  
STAR NC WA 

Percentile  Math Reading Math Reading Math Reading 
2  8.3 8.4 19.9 24.1 20.9 24.9 

  (6.1,10.6) (3.5,12.8) (19.5,20.4) (23.7,24.7) (20.1,21.7) (24,25.7) 

  <8.4> <9.6> <21.9> <27.7> <20.2> <25.2> 
5  14 16.8 26.1 30.1 26.4 30 

  (11.9,16.3) (14.1,19.4) (25.7,26.5) (29.7,30.5) (25.8,27.1) (29.4,30.6) 

  <13.2> <14.9> <26.8> <31.2> <25.5> <29.5> 
12  23.4 25.3 33.5 36 33.4 35.6 

  (21,25.5) (23.2,27.7) (33.1,33.8) (35.7,36.2) (33,33.8) (35.2,35.9) 

  <21.8> <23.2> <33.3> <35.5> <32.4> <34.8> 
15  26.2 28.2 35.6 37.5 35.4 37.1 

  (24.2,28.5) (26,30.4) (35.3,35.9) (37.3,37.8) (34.9,35.8) (36.7,37.4) 

  <24.9> <26.1> <35.3> <36.9> <34.5> <36.4> 
45  47.5 47.6 49.1 46.7 48.4 46.8 

  (45.6,49.5) (45.8,49.5) (48.9,49.4) (46.5,46.8) (48,48.7) (46.5,47) 

  <48.7> <47.8> <49.4> <46.2> <49.4> <47.4> 
50  50.7 50.4 51 47.9 50.2 48.1 

  (48.7,52.9) (48.6,52.5) (50.7,51.3) (47.7,48.1) (49.9,50.5) (47.8,48.4) 

  <52.5> <51.1> <51.4> <47.6> <51.4> <49> 
55  54.2 53.5 52.8 49 52 49.4 

  (51.9,56.1) (51.5,55.3) (52.6,53.1) (48.9,49.2) (51.7,52.3) (49.1,49.7) 

  <56.1> <54.5> <53.4> <48.9> <53.5> <50.5> 
85  75.9 71.7 65.9 56.9 65.7 60 

  (74,77.3) (70.1,73.4) (65.5,66.2) (56.7,57.2) (65.3,66.2) (59.6,60.4) 

  <77.9> <74.4> <67.3> <58.7> <67.4> <61.2> 
88  78.2 74 67.8 58.1 67.8 61.6 

  (76.6,79.8) (72.4,75.9) (67.5,68.2) (57.8,58.4) (67.4,68.3) (61.3,62.1) 

  <80.5> <77> <69.3> <60.1> <69.3> <62.8> 



 

95  86.5 82.4 74.3 62.3 75.5 67.4 

  (84.4,88.7) (79.9,85.2) (73.9,74.8) (61.9,62.8) (74.8,76.1) (66.8,68) 

  <87.7> <84.3> <75.4> <65> <75.3> <67.8> 
98  93.3 89.5 80 66.2 81.7 72.9 

  (91,94.9) (86.3,91.8) (79.4,80.6) (65.4,67.1) (80.9,82.4) (72,73.8) 

  <91.6> <89> <80.1> <69> <79.8> <71.8> 
Note: Rows give the percentile of student achievement measured by value-added for the 
indicated point in the teacher productivity distribution. For example, a teacher at the 2nd 
percentile of productivity on student achievement in math in the STAR data has a mean student 
outcome at the 8.3rd percentile of student gains. 95% confidence intervals appear in parentheses 
and corresponding percentiles for a normal distribution in angle brackets. 

   



 

Table 4. Effect of 10 Percentile Movement Across the Productivity Distribution 

 
STAR NC WA 

Percentiles Math Reading Math Reading Math Reading 
2-12 15 16.9 13.5 11.8 12.5 10.6 

 
(12.6,17.5) (12.8,21.8) (13,14) (11.4,12.3) (11.7,13.2) (9.9,11.4) 

 
<13.4> <13.5> <11.4> <7.9> <12.2> <9.6> 

45-55 6.7 5.9 3.7 2.4 3.6 2.7 

 
(6.1,7.4) (5.2,6.5) (3.6,3.8) (2.3,2.5) (3.4,3.8) (2.5,2.8) 

 
<7.3> <6.7> <4.0> <2.7> <4.1> <3.1> 

88-98 15 15.5 12.2 8.1 13.8 11.3 

 (12.9,16.8) (12.5,18) (11.6,12.8) (7.3,8.9) (13,14.6) (10.3,12.1) 

 
<11.1> <12.0> <10.9> <8.9> <10.5> <9.1> 

Notes: 95% confidence intervals in parentheses; corresponding effect for a normal 
distribution in angle brackets. 

 

  



 

Table 5. Value of Replacing Teachers Across the Productivity 
Distribution         

  
STAR NC  WA 

  
Math Reading Math Reading Math Reading 

Replacing teacher at the 2nd 
percentile with a teacher at the 12th 
percentile DM $7,076 $9,638 $6,622 $7,369 $6,390 $6,343 

 
Gaussian $6,141 $6,141 $6,141 $6,141 $6,141 $6,141 

Replacing teacher from the bottom 
5% with an average teacher DM $14,844 $15,891 $14,014 $14,713 $13,623 $13,773 
  Gaussian $14,500 $14,500 $14,500 $14,500 $14,500 $14,500 
Note: Based on calculation from Chetty et al. (2014) and assuming .878 standard deviation change from 2nd to 12th 
percentile with a Gaussian distribution. 

 

 

  



 

Figure 1. 

 

   



 

Appendix Table A-1. Characteristics of Teacher Effectiveness 
Distribution (Teacher-Year Effects) 
Panel A. Math NC WA 

!Effect sizes 
  !

 
Unadjusted 0.25 0.27 

!
 

EB Adjusted 0.22 0.25 
!

 
D-M Adjusted 0.24 0.26 

!Skewness (unadjusted) 0.21 0.37 
!Skewness (D-M adjusted) 0.25 0.46 
!Kurtosis (unadjusted) 3.57 3.84 
!Kurtosis (D-M adjusted) 4.24 4.26 
!Modified KS p-value <0.0005 <0.0005  

N 
 

87604 35544 
!

    !Panel B. Reading 
  !Effect sizes 
  !

 
Unadjusted 0.20 0.24 

!
 

EB Adjusted 0.15 0.20 
!

 
D-M Adjusted 0.17 0.22 

!Skewness (unadjusted) 0.10 0.27 
!Skewness (D-M adjusted) 0.17 0.29 
!Kurtosis (unadjusted) 3.98 3.60 
!Kurtosis (D-M adjusted) 6.18 4.64 
!Modified KS p-value <0.0005 <0.0005 
!N 

 
87604 35544 

!Note: effect sizes represent the effect of a one standard deviation 
change in teacher effectiveness on student achievement. 



 

 

Appendix Table A-2. Coefficient Estimates for Value-Added Models 

  
STAR NC WA 

  
Math Reading Math Reading Math Reading 

Scores 
       

 
Lagged Math 0.648* 0.221* 0.676* 0.298* 0.669* 0.299* 

  
(0.011) (0.012) (0.001) (0.001) (0.001) (0.001) 

 
Lagged Reading 0.254* 0.696* 0.190* 0.557* 0.183* 0.494* 

  
(0.010) (0.010) (0.001) (0.001) (0.001) (0.002) 

 
Squared Lagged Math -0.009* 0.012* 0.013* -0.001* -0.015* -0.008* 

  
(0.007) (0.007) (0.000) (0.000) (0.001) (0.001) 

 
Squared Lagged Reading -0.005* -0.043* 0.029* -0.000* 0.000 -0.041* 

  
(0.007) (0.007) (0.000) (0.000) (0.000) (0.001) 

 
Cubed Lagged Math -0.021* -0.010* -0.021* -0.008* -0.021* -0.010* 

  
(0.003) (0.003) (0.000) (0.000) (0.000) (0.000) 

 
Cubed Lagged Reading -0.004* -0.009* -0.004* -0.021* -0.006* -0.015* 

  
(0.002) (0.002) (0.000) (0.000) (0.000) (0.000) 

FRL 
 

-0.124* -0.123* -0.069* -0.083* -0.070* -0.080* 

  
(0.013) (0.014) (0.001) (0.001) (0.002) (0.002) 

SPED/Learning disability 
      

 
Ever Special Ed -0.118* -0.154* 

    
  

(0.016) (0.016) 
    

 
Math Learning Disability 

  
-0.216* 0.001 

  
    

(0.003) (0.003) 
  

 
Reading Learning Disability 

  
0.048* -0.276* 

  
    

(0.003) (0.003) 
  

 
Writing Learning Disability 

  
-0.044* -0.069* 

  
    

(0.003) (0.003) 
  

 
Learning Disability 

    
-0.045* -0.116* 

      
(0.004) (0.004) 

 
Gifted 

    
0.277* 0.219* 

      
(0.004) (0.004) 



 

 
Special Ed, No Learning Disability 

    
-0.157* -0.174* 

      
(0.003) (0.003) 

Race 
       

 
Minority -0.057* -0.009 

    
  

(0.022) (0.023) 
    

 
African American 

  
-0.128* -0.110* -0.087* -0.020* 

    
(0.001) (0.001) (0.003) (0.004) 

 
Hispanic 

  
0.016* -0.008* -0.026* -0.020* 

    
(0.003) (0.003) (0.002) (0.002) 

 
Minority Other than AA & Hispanic 

  
0.018* -0.028* 

  
    

(0.002) (0.002) 
  

 
Native American 

    
-0.058* -0.063* 

      
(0.005) (0.005) 

 
Asian 

    
0.101* 0.023* 

      
(0.003) (0.003) 

Female 
 

-0.031* 0.096* -0.035* 0.054* -0.035* 0.106* 

  
(0.010) (0.011) (0.001) (0.001) (0.001) (0.001) 

Limited English Proficiency 
  

-0.009* -0.135* -0.049* -0.138* 

    
(0.004) (0.004) (0.003) (0.003) 

Parents have Bachelor's or Higher 
  

0.100* 0.100* 
  

    
(0.001) (0.002) 

  Classroom Characteristics 
      

 
Class size 

  
-0.005* -0.003* -0.002* -0.002* 

    
(0.000) (0.000) (0.000) (0.000) 

 
Percent: Free Lunch 

  
-0.028* -0.009* -0.109* -0.039* 

    
(0.004) (0.004) (0.007) (0.008) 

 
Percent: Special Ed 

  
0.027* 0.012* -0.116* -0.092* 

    
(0.008) (0.009) (0.012) (0.013) 

 
Percent: Limited English Proficiency 

  
0.062* 0.058* -0.027* 0.013* 

    
(0.013) (0.014) (0.013) (0.014) 

 
Percent: Parents have Bachelor's or Higher 

  
-0.044* -0.039* 

 
              

    
(0.004) (0.005) 

 
              

 
Percent: Minority 

  
-0.046* -0.064* -0.038* -0.018* 

    
(0.005) (0.005) (0.008) (0.009) 



 

 
Mean Lagged Math Score 

  
-0.077* -0.062* -0.139* -0.072* 

    
(0.003) (0.004) (0.005) (0.005) 

 
Mean Lagged Reading Score 

  
0.043* 0.031* 0.026* -0.007* 

    
(0.004) (0.004) (0.005) (0.006) 

 
Mean Squared Lagged Math 

  
0.008* -0.001 0.017* 0.010* 

    
(0.003) (0.003) (0.005) (0.005) 

 
Mean Squared Lagged Reading 

  
0.014* 0.001 -0.001 -0.004* 

    
(0.004) (0.004) (0.005) (0.006) 

 
Mean Cubed Lagged Math 

  
0.011* 0.010* 0.008* 0.002* 

    
(0.003) (0.003) (0.003) (0.004) 

 
Mean Cubed Lagged Reading 

  
0.013* 0.010* -0.009* -0.001 

    
(0.004) (0.004) (0.004) (0.005) 

Lagged Absences (Omitted Reference Category: 0-3) 
      

 
4-9 Absences -0.036* -0.020* 

    
  

(0.016) (0.017) 
    

 
10-19 Absences -0.013* 0.013 

    
  

(0.018) (0.019) 
    

 
20 or more Absences -0.060* -0.029* 

    
  

(0.027) (0.028) 
    Expulsion or Suspension in Prior Year 

  
-0.032* -0.024* 

  
    

(0.004) (0.005) 
  

        R-squared 
 

0.712 0.701 0.725 0.683 0.688 0.619 
N   12265 12114 1791228 1791228 771406 771406 
Notes: *p<.05. Coefficients are based on regressions pooling across all years and grades, with teacher, year, and grade fixed effects, and indicators 
for missing variables. Class size is included for NC and WA, but not STAR because it is collinear with the teacher effects. Variable definitions are 
not completely consistent across sites. For example, the special ed variable with the STAR data is an indicator that the student participated in a 
special education program at any point within the time period of the sample; in NC, learning disability is broken out by subject; and in WA, there 
are separate categories for participation in special education and gifted and talented programs and whether the student has a learning disability. 
Each site also has different categories for race and ethnicity. 

 


